anti-double stranded DNA

FREE subscriptions for doctors and students... click here
You have 3 more open access pages.

This autoantibody is associated with systemic lupus erythematosus (SLE) in which it is found in 50% of cases. Though less sensitive it is a more specific test than antinuclear factor, since it is seldom positive in other conditions (1).

It is associated with more severe disease, vasculitis and nephritis in SLE. The HLA-markers associated with SLE and anti-dsDNA are HLA-DR2 and HLA-DQB1.

Antiantibodies to double-stranded DNA (dsDNA) have also been reported as a consequence of medications such as minocycline and tumour necrosis factor-alpha inhibitors - thus their significance should be made in the context of the full clinical picture (2).

Laboratories may mention the Crithidia luciliae test (see notes for details)

  • this haemoflagellate has giant mitochondria containing dsDNA (but not single-stranded DNA (ssDNA) - this lends itself to detection of dsDNA antibodies by immunofluorescence

Autoantibodies to ssDNA

  • found in many connective tissue disorders and other conditions - are of little diagnostic use due to their lack of specificity (2)

Notes:

  • dsDNA antibodies are excellent indicators of SLE disease activity and their elevated levels usually precede exacerbation of disease (sometimes by more than a year) (3)
    • anti-dsDNA levels rise during flares of SLE disease activity, especially in lupus nephritis (3)
  • laboratory methods for detecting anti-dsDNA
    • anti-dsDNA antibodies are generally detected and quantified by commercially available kits for enzyme-linked immunosorbant assay (ELISA, also automated versions), Crithidia luciliae immunofluorescence assay (CLIFT), and radioimmunoassay methods developed according to Farr technique
      • different combinations of these methods are used in diagnostic laboratories worldwide, without a consensus on exclusive methods
      • an important cause of discrepancies between results obtained with different methods lies in the avidity of antibodies
        • ELISAs detect antibodies of both low and high avidity, whereas CLIFT and FARR-RIA assays predominantly detect antibodies of high avidity
    • for the diagnosis of SLE, it is crucial that the anti-dsDNA assay is highly specific for dsDNA, especially since elevated levels of anti-dsDNA antibodies can also be detected in other autoimmune diseases, as well as in blood donors, very much depending on the detection method used
      • FARR-RIA has the highest specificity for anti-dsDNA antibodies detection but a low sensitivity (3)
      • CLIFT detects both high and low avidity anti-dsDNA antibodies and may be used as a primary screen (3)
        • retesting of positive samples with FARR-RIA not only confirms the diagnosis but also provides the quantitative data allowing the monitoring of disease activity
      • problem with anti-dsDNA ELISAs is that they often give false-positive results due to binding of immune complexes (with negatively charged moieties) to the pre-coat intermediates
      • antibodies against single-stranded DNA only recognize single-stranded DNA and are specifically directed against purine and pyrimidine bases
        • observed not only in patients with SLE but also in other connective tissue diseases, such as systemic sclerosis and myositis

Reference:

 

Last reviewed 01/2018

Links: